
PhD Topic: Coalgebraic Logic and Distributive Laws

Ruben Turkenburg

April 17, 2022

1 Introduction

Coalgebras have now been studied for a number of decades as a way to investigate systems with
some notion of states and transitions. A simple example of a system which can be studied in
this way is a traffic light system. In this case, the state of the system is the combination of lights
that are on, and the transitions are the usual ones, such as going from green to amber. More
complex examples include protocols for communication over networks and computer programs,
which manipulate the state of a computer’s memory by carrying out the instructions written by a
programmer.

By using coalgebras to study such systems, we take an abstract view allowing for very general
insights, applicable to many systems at once. When considering these coalgebras, we would
often like to show that certain states have different behaviours (in the sense that we can exhibit
a difference in their configuration at some point in time). A way to do this is by considering
properties of the system which may hold in one state but not another. For the traffic light example,
consider the difference between a British and European (at least Dutch) traffic light system. For
the first a transition is made from red to red and amber together, whereas in the second the light
goes from red straight to green. Thus, a property of the first which is not enjoyed by the second is
that in the state signified by the red light being on, a possible following state will have red and
amber on simultaneously. This shows that in these two systems, the states where the red light is
on do not have the same behaviour. This kind of reasoning is easily applicable to many systems,
however we would also like to be able to use the converse: that states which have all the same
properties also behave in the same way. Unfortunately, this is not always the case, but in many
cases there are ways to extend the system so that we can apply this reasoning while preserving the
original states (this is important, as otherwise we might not be able to talk about the behaviour of
the states we started with). A current area of interest is to do this “changing of systems” in the
realm of coalgebras in a way which is more easily (and more generally) applicable than current
methods. This is what I am looking at during this phase of my PhD.

During this work, a tool that arises quite often is distributive laws. These are a generalisation of
rules such as

x · (y + z) = x · y + x · z (1)

(w+ x) · (y + z) = w · y +w · z + x · y + x · z (2)

where we say that multiplication distributes over addition. This kind of interchange between
operations appears also in (functional) programming. For example, a well known function on
lists is zip, which takes a pair of lists and creates a list of pairs each consisting of an element of

1

the first list and an element of the second list in the input pair. Here, we notice an interchange
between lists and pairs. A more complex example, which is of interest in the area of coalgebra, is
the combination of what are called the powerset and finite distribution monads. These can be
used to model fairly simple transition systems (similar to the traffic light example) and systems
where the transitions are taken with a certain probability respectively. If we want to model a
situation where both of these behaviours arise simultaneously, a distributive law makes this much
simpler. All of these examples can be studied as instances of the same abstract construction, which
we explain later.

2 Formal Definitions

2.1 Coalgebras

The formal definition of a coalgebra is given in the language of category theory (more on this is
given in Appendix A, we give some intuition and revisit the traffic light example after stating the
definition.

Definition 2.1. For an endofunctor F: C →C an F-coalgebra is a pair (X,γ), with X an object of
the category C and γ: X→ FX a morphism in C .

The idea is that the X in this definition is the collection of states in which a system we are
studying can be, and the morphism (think of a function) γ tells us how the state of the system can
change.

Example 2.2. If we try to fit the (British) traffic light example into the definition of a coalgebra, we
need to start with the collection of possible states. In this case, this is simply a set (and the category C
we are working in is the category Set of sets and functions, but this is not important for the example)
which we could write as {red, red− amber, amber, green}. Now, we must give a function γ: X→ FX,
which describes the transitions of a traffic light. For this example, we ignore the endofunctor F and
simply have a function X → X defined by red 7→ red− amber 7→ green 7→ amber 7→ red, where the
symbol 7→ can be read as “makes a transition to.” It is hopefully already clear how this describes the
possible changes of state of a traffic light, but we can also give a diagrammatic representation as
follows:

red red− amber green amber

More generally, where we do not ignore the endofunctor F, we can describe more complex systems.
For example, we may want to model the failure of a traffic light, whereby there are additional
transitions possible from any state to a new state representing the traffic light being off or other
strange behaviour such as all lights being on simultaneously. In that case, we could have a function
mapping a state to a set of possible following states, rather than simply a single state.

Well known examples in the field of computer science include: various forms of finite automata;
finite state machines; and Turing machines. These can in turn be used to model simple compu-
tations, systems where some form of interaction is possible (like communication protocols) and
computations of general computers respectively.

2

2.2 Distributive Laws

This is going to be hard to explain ,.

Distributive laws in the form used when studying coalgebras are again formulated in terms of
category theory. We will give some definitions followed by some intuition.

The most basic form of distributive law, is based on functors.

Definition 2.3. A distributive law of an endofunctor B over an endofunctor T is a natural
transformation λ: BT⇒ TB.

We see in this definition some form of interchange of the operations given by B and T, however it
is unfortunately not so easy to fit the examples from earlier into this picture.

Also of interest are cases where the functors involved in a distributive law form what are called
monads.

Definition 2.4. Let C be a category. A monad is a triple (T,η,µ) made up of: T: C → C an
endofunctor on C and η: 1⇒ T and µ: T2 ⇒ T natural transformations, such that the following
equations hold: µ ◦ Tη= 1T = µ ◦ηT and µ ◦ Tµ= µ ◦µT.

Of this definition, the most important elements are the natural transformations η and µ. These
provide, for any object X of the category C , morphisms ηX : X→ TX and µX : TTX→ TX. We can
think of T as giving some structure based on the object X, for example, if X is a set we could have
a T so that TX is the set of subsets of X. We expand on this example now.

Example 2.5. The endofunctor giving for a set its set of subsets is denoted by P . The most common
transformation ηX : X→P X is then given by x 7→ {x} i.e. we take an element of the set X, and form
the set containing just that element. The transformation µX : PP X→P X which is combined with
this η, takes a set of subsets of X and returns the union of these sets. For example, applying this to
the set {{w, x}, {y, z}} yields {w, x , y, z}. We can think of this as a “flattening” operation.

In general, we can think of the transformations η and µ giving us a way to construct basic elements
of the “structured” object TX from elements of X and a way to combine elements of the “doubly
structured” object TTX into elements of TX.

Example 2.6. Perhaps a more approachable example (although one which is actually rather similar
to Example 2.5) again comes from functional programming. Here, the object X represents a type
of the programming language, and we consider the T forming lists of elements of type X. The map
ηX : X → TX constructs from an element x of type X, the list [x] containing only x . The map
µX : TTX→ TX is again a “flattening” operation taking a list of lists and combining these lists, e.g.,
[[1, 2,3], [3,4, 5]] 7→ [1,2, 3,3, 4,5].

The definitions of a distributive law of a monad over a monad or monad over an endofunctor
are rather involved (so we don’t give them here). They start with the same transformation as
in Definition 2.3, and extend this with conditions on how this transformation interacts with the
morphisms involved in the monad(s). When we have two monads, a corresponding distributive
law gives a way to build a new monad:

Example 2.7. Given a distributive law λ: BT⇒ TB of a monad (B,ηB,µB) over a monad (T,ηT,µT),
we can construct a monad based on the functor TB obtained by composition. The map ηTB is
constructed as

X BX TBX
ηB

X ηT
BX (3)

3

and the map µTB is constructed as

TBTBX TTBBX TTBX TBX
TλBX TTµB

X µT
BX (4)

These types of constructions are often of interest to computer scientists; they give us a way to build
new operations from existing ones, which is very useful.

A Some category theory

Our first definition is of course that of a category.

Definition A.1 (Category). A category C consists of:

• A collection of objects Ob(C)

• A collection of morphisms Hom(C)

• For each morphism f a source s(f) and target t(f)

• For any two morphisms f , g with t(f) = s(g), a morphism g ◦ f

• For any object X, a morphism idX

such that the following hold

• s(g ◦ f) = s(f) and t(g ◦ f) = t(g)

• s(idX) = X = t(idX)

• The composition of morphisms is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f)

• The morphisms idX act as units in the following way: idY ◦ f = f when t(f) = Y and f ◦ idX = f
when s(f) = X

We will write X ∈ C for X an object of C , and f : X→ Y for a morphism of C with s(f) = X and
t(f) = Y. We also use Hom(X,Y) to note the collection of morphisms with source X and target Y.
A category is called small if Hom(X, Y) is a set for all objects X,Y ∈ C . For any category C , there is
an opposite category C op with the same objects and where a morphism f : X→ Y in C op is simply
a morphism f : Y→ X in C where the composition g ◦ f in C op is defined as f ◦ g in C .

Next, we define maps between categories called functors, which preserve the structure of the
categories involved in the sense that the rules for identity and composition of morphisms are
respected. It is also possible to compose functors in the expected fashion. In this way, categories
themselves form a category Cat, which is one the reasons the objects in a category are defined as
forming a collection and not a set.

Definition A.2 (Functor). A functor F: C →D is a map taking objects X ∈ C to objects F(X) ∈ D
and morphisms f : X→ Y in C to morphisms F(f): F(X)→ F(Y) in C , such that:

• F(idX) = idF(X) for all objects X ∈ C

• F(g ◦ f) = F(g) ◦ F(f) for morphisms f , g ∈ Hom(C) such that the composition exists.

A functor F: C →C is also called an endofunctor. We will often omit the brackets and write F f
and FX instead of F(f) and F(X).

The following example of a functor will often be useful, for example, in later definitions of this
section.

4

Definition A.3. For an object C ∈ C , the constant functor ∆C : D →C sends any object D ∈ D to C
and any morphism in D to idC.

We have now seen morphisms between objects of a category and morphisms between categories
themselves. Going a level higher, we define morphisms between functors.

Definition A.4 (Natural Transformation). For functors F, G: C → D, a natural transformation
α: F ⇒ G gives for each object X ∈ C a morphism αX : FX → GX such that for any f : X → Y the
following diagram commutes:

FX FY

GX GY

F f

αX αY

G f

It should be clear that we can compose functors with functors. We can also compose natural
transformations with natural transformations, but this can be done in two ways. If we have natural
transformations λ: F⇒ G and ν: G⇒ H between functors F, G,H: C →D, then the composition
νλ: F⇒ H is defined component-wise using composition of functors by (νλ)X = νXλX. The other
form of composition applies if we have a natural transformation λ: F ⇒ G between functors
F, G: C →D and another natural transformation ν: H⇒ K between functors H, K: D → E . Then
there exists a composition ν ∗λ: HF⇒ KG.

It is also possible to compose functors and natural transformations, again in two ways. For
λ: F⇒ G a natural transformation between functors F, G: C →D and H: D → E another functor,
the composition Hλ: HF ⇒ HG is defined by (Hλ)X = H(λX). If we instead have a functor
K:B →C we can form the composition λK: FK⇒ GK given by (λK)X = λKX.

5

	Introduction
	Formal Definitions
	Coalgebras
	Distributive Laws

	Some category theory

